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Abstract: This paper presents the results of laboratory tests of water hammer phenomenon induced
in two series-connected copper pipes with different diameters (a diameter ratio of 1:1.25) by a quick-
closing valve installed at the end of the simple upstream tank–pipeline–valve system. Test results
were compared with calculations made with the use of various friction loss models incorporated in a
one-dimensional model based on a method of characteristics. The calculation takes into consideration
quasi-steady and unsteady friction models as well as a special discretization procedure of the solution
domain that ensures the elimination of numerical diffusion in the numerical scheme. The main
attention was paid to determining the value of the pressure wave speed in the pipes, which has
a significant influence on the compliance between the calculations and the experimental results
of the pressure amplitudes and wave frequencies. Two methods of determining the wave speed
were proposed and evaluated based on the measurements. The results presented in this article
indicate that the use of the proposed procedure instead of the classic formulas for determining the
pressure wave speed gives the desired correspondence between the frequencies of the measured and
calculated waves. Calculation examples made with the use of different friction models showed that
application of the developed procedure for discretization of the solution domain and the method
used for determining the wave speed opened the possibility of reliable verification of these models,
free of numerical errors and frequency discrepancies between the computational and measured wave.

Keywords: water hammer; pressure wave speed; unsteady friction losses modelling; pipeline systems
of series-connected pipes; equivalent pipeline systems

1. Introduction

The vast majority of water hammer laboratory tests concern pipelines with constant
cross-sections. There are many examples in the literature of different kinds of simulation
models based on the measurement results of pressure wave propagation in such pipelines.
These models concern friction loss [1–4], column separation and transient cavitation [5–9],
FSI and visco-elasticity of pipeline materials [10–14], as well as transient flow of liquids
in pipelines with air content [15–18]. The use of pipelines with constant diameters in
these examples allowed the avoidance of, among others, considering different pressure
wave parameters characteristic of individual pipes with different diameters connected in
series. Flow conditions in such pipes that make up a complex system are characterized
with different liquid flow velocities, as well as different pressure wave propagation speeds.
These parameters significantly affect the parameters of the numerical model and thus the
obtained calculation results. This is a particularly important issue when using the method
of characteristics (MOC), in which the selection of the numerical grid requires a special
approach to eliminate the influence of numerical damping on the calculation results that is
crucial when the purpose is to verify the friction models used in the calculations. In such a
situation, the aim should be to obtain calculation results free of e.g., numerical damping,
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which requires an appropriate approach to discretization of the solution area together with
precise knowledge of the wave propagation speed in all elements of a complex flow system.

Since this type of issue is often analyzed in the setting of engineering practice, in some
research it is recommended to replace pipelines composed of different pipes connected in
series with one pipe with a constant, equivalent diameter with respect to wave speed, inertia
forces and pressure losses [19–23]. This approach is particularly useful in the simulation
of transient phenomena in complex transmission networks, where connections of pipes
of different diameters are usually very common. Therefore, both from the theoretical and
practical point of view, there is a need to know how reliable such an approach is.

The available literature shows that in recent decades, numerous researchers have paid
attention to the study of transients in pipelines composed of pipes of variable diameters and
different materials [24–33]. In the publications of [25–29], the results of studies of unsteady
liquid flow in the viscoelastic pipeline system with variable diameters and materials are
considered. In [32,33] a method based on the analysis in the frequency domain of determin-
ing the equivalent speed in the pipeline system consisting of different pipes connected in
series has been introduced. This method can also be found in the [34] monograph.

Authors of [24] investigated numerically the effect of a narrowed section of an elastic
pipeline on a water hammer using the MOC method. Transient friction losses were taken
into account using the Zielke friction model applicable for laminar flow, which is very rare
in engineering practice.

In [30], the MacCormack scheme for a system of elastic pipes connected in series is
used to solve the equations describing the water hammer. The Brunone model was used in
the friction loss calculations. The obtained results were compared with the results obtained
using the MOC, while the comparison with the results from the experiment was made
only for a single pipeline with constant parameters (concerning geometry and wave) along
its length.

In [31], a mathematical model for calculating the course of a water hammer in a system
of elastic (steel) pipes connected in series is presented. In the numerical simulations, the
MacCormack scheme was also used, assuming a constant pressure wave speed equivalent
to a given pipe configuration, and the calculation of friction losses was based on the
Brunone model. The calculations were experimentally verified by adjusting the parameters
of the adopted friction model.

In the context of pipelines of variable diameter, attention should also be paid to a
number of works whose main purpose is to detect extended blockages in pipelines using
the nature of transient pressure wave waveforms (i.e., transient test-based techniques).
Most often, the physical model in this issue is a section with a smaller diameter inserted into
the pipeline, and in order to detect blockages, an analysis of pressure changes is carried out
in the frequency domain [35–41] or in the time domain [25,42–44]. Techniques for detecting
blockages in pipelines are also proposed based on the coupling of these two approaches,
i.e., on transient tests analyzed in the frequency domain and time domain [45]. Both
experimental and numerical tests are used to validate the detection techniques. Numerical
tests are prepared using MOC or other methods of solving equations describing the water
hammer in pipelines with constrictions simulating extended blockages.

On the basis of the available publications, it should be noted that the results of the
numerical simulation of the water hammer with the use of various models of friction losses
for elastic pipelines connected in series and the comparison of these results with the results
of experimental tests are not very frequent. Examples of articles that present such results
analyze the issues of numerical errors generated by the calculation scheme in a superficial
and insufficient way. Also, the issue of determining the pressure wave speed in individual
pipes of a complex flow system is not the subject of thorough analysis. Typically, the
proposed solutions are based on classical methods of estimating the pressure wave speed
and ignore the impact of these methods on the calculation results.

The main purpose of work presented in this paper was to conduct laboratory tests
of a water hammer in a relatively simple pipeline system composed of two copper pipes



Appl. Sci. 2024, 14, 7173 3 of 28

connected in series with different diameters and relative wall thicknesses. The results of
these tests were used to verify the developed numerical method for simulating a water
hammer, which takes into account different models of friction losses. In order to ensure the
appropriate conditions for such verification, the method, based on MOC, includes a special
procedure allowing for the avoidance of numerical damping.

The basis of this method is the precise determination of the pressure wave speed for
each of the pipes in the complex flow system. This is necessary to select the appropriate size
of the numerical grid, which for the determined wave speeds will ensure the calculation
results without numerical attenuation.

Considering the pipes in the flow system as thin walled, the calculation of the pressure
wave speed in its individual pipes can be based on the following formula [19]:

ai_calc =

√√√√ K

ρ
(

1 + K
Ei

Di
ei

c1_i

) (1)

where ai_calc is the computational pressure wave speed in the i-th pipe [m/s], K is the liquid
elasticity modulus [Pa], Ei is the Young’s modulus for the material of the i-th pipe [Pa], ρ is
the liquid density [kg/m3], Di is the internal diameter of the i-th pipe [m] and ei is the wall
thickness of the i-th pipe [m]. The coefficient c1_i [-] depends on the method of fixing the
i-th pipe:

• c1_i = 1 − 0.5νi for a pipe anchored at its one end only;
• c1_i = 1 − νi

2 for a pipe anchored throughout from axial movement;
• c1_i = 1 for a pipe anchored with expansion joints throughout.

where νi [-] is the Poisson’s ratio of the i-th pipe material.
Calculation of the pressure wave speed using Equation (1) may be associated with

even a few (or more) percent inaccuracy, influenced by the underlying assumptions [46].
According to them:

• The influence of FSI on the pressure wave propagation speed change is not taken into
account. Only the quasi-static response of the pipeline structure to the pressure wave
is taken into account;

• The bulk modulus of the liquid is constant, regardless of pressure changes;
• Changes in liquid density due to pressure are not taken into account—e.g., it is

assumed that the liquid is not a water–gas mixture;
• A two-dimensional state of stress in the pipeline shell is assumed (thin wall pipe);
• The manner and influence of the pipeline support and fastening on the pressure wave

speed is taken into account by using an approximate value of the c1 coefficient.

With the appropriate configuration of the flow system and rigid mounting of the
pipelines, the influence of FSI on the pressure wave speed can be eliminated or at least
significantly reduced. The variability of the compressibility modulus and density from
pressure for a fluid consisting of a mixture of water and a small amount of air may also
be an insignificant concern for the pressure wave speed. The assumption of treating the
pipeline as thin walled depends on the Douter/e ratio. It is usually assumed that pipelines
with a Douter/e ratio not lower than 20 can be treated as thin walled, which means that
assuming a two-dimensional state of stress in such cases affects the determination of the
value of the pressure wave speed insignificantly. The last mentioned factor related to the
fastening of the pipeline and the corresponding correct value of the c1 coefficient most
significantly affects the uncertainty of a estimated using Equation (1).

In connection with the assumptions underlying Equation (1), in order to make the
most reliable verification of the developed numerical calculation method in this work, the
determination of the pressure wave speed for a system consisting of pipe series of different
diameters was based on the measured and recorded pressure changes induced by a sudden
flow cut-off. Two methods for determining pressure wave speed ai, characteristic for the
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particular pipes forming the system, were proposed and used in the numerical analysis of
the water hammer phenomenon.

The following parts of the paper describe the numerical method used to simulate
the water hammer phenomenon in complex systems, which takes into account the quasi-
steady and unsteady models of friction losses. This method uses an original procedure
of discretization of the solution domain, which allows for avoiding the artificial damping
generated, usually by the numerical scheme. This is particularly important for the accurate
verification of the friction loss models used in the calculations.

The mathematical model forming the basis of the numerical method was verified using
qualitative comparative analysis between the measurement and calculation results. The
conclusions provided a basis for evaluating the friction loss models used in the calculations
according to the agreement of the calculation and experimental results. The simplified
approach to calculating the course of pressure changes during a water hammer, involving
the use of equivalent quantities, was also evaluated.

The problem related to the occurrence of the water hammer phenomenon concerns
most technological systems encountered in practice. Wherever these systems are built
from pressure pipelines, this phenomenon should be absolutely taken into account at the
conceptual and design stage. Additionally, special attention should be paid to it during
the current operation of such systems by designing appropriate operating procedures
to prevent the adverse effects of the occurrence of a water hammer and to ensure the
work safety of these systems. Pipeline systems cooperating with pumps, penstocks of
hydropower plants, and long transport pipelines in which numerous regulating and shut-
off fittings are installed, which may cause this phenomenon, are particularly vulnerable
to the formation of a water hammer. Such systems are usually built from numerous
connections of variable diameter pipelines and branches, which significantly complicate
the analysis of flow phenomena, including water hammers. Therefore, it is so important
to recognize the influence of the geometry of such systems on the flow characteristics of
their components and thus on the course of this phenomenon. From this point of view, the
advantage of the methods presented in the paper is the development of a quick practical
way for determining the pressure wave speed characterizing the individual pipelines
comprising the analyzed flow system.

2. Laboratory Stand

One of the most important elements of the work presented in this paper is laboratory
tests carried out on a test stand built in the laboratory hall of the Institute of Fluid-Flow
Machinery of Polish Academy of Sciences in Gdansk—Figure 1. The stand consists of two
copper pipes connected in series with the following geometric parameters:

• Pipe #1: inner diameter D1 = 20 mm, wall thickness e1 = 1 mm, length L1 = 49.3 m
• Pipe #2: inner diameter D2 = 16 mm, wall thickness e2 = 1 mm, length L2 = 58.9 m

The change in diameter between the pipes is stepwise.
The pipeline system is supplied from the upstream tank (horizontally arranged cylin-

drical pressure tank with a diameter of 2 m and total volume equal to 10 m3, with an air
cushion). The maximum pressure in the upstream tank that could be maintained during
the tests was 1.2 MPa of absolute pressure.

Water from the pipeline is directed to the downstream tank (tank opened to an atmo-
sphere of total volume equal 8 m3: cube shape with side 2 m). The water in the stand flows
in a closed circuit—it is pumped from the downstream tank by a pump unit equipped with
a variable rotational speed drive through auxiliary pipelines to the upstream tank. From
the upstream tank, it flows through the measuring pipeline system and auxiliary pipelines,
which, together with the installed control fittings, are used to stabilize the initial conditions
during the tests (pressure and flow in the measuring pipeline system).
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Figure 1. Laboratory stand for testing water hammers in series-connected pipes of different diameters.

At the end of the measuring pipeline (looking in the direction of water flow, i.e., at the
end of pipe #2), a quick-closing ball valve is installed, which enables an almost stepwise
shut-off of the water flow. A high degree of repeatability of the valve closing processes was
achieved using a special spring drive. In the tested cases, the closing time, Tc, was close to
2 ms.

The laboratory stand is equipped with six pressure transducers installed in the initial,
middle and end sections of each pipe, looking in the direction of the initial flow, and in the
upstream tank. This paper focuses on the results measured at the valve (end of the pipe #2)
because this is where the water hammer is most intense [19,46].

Each of the pressure transducers produced by KELLER Druckmesstechnik AG (Win-
terthur, Switzerland) was mounted on the pipeline with the use of a short (approx. 0.07 m)
flexible impulse tube, which allows for significantly reducing the influence of pipeline
structure vibrations on the measured pressure signal. The small length of the impulse
tubes in relation to the total length of the pipeline and very high relative stiffness of their
material (approx. 10 times higher than the coating of the measuring pipeline) minimized
their influence on the measured pressure changes during the tested phenomenon.

The pressure transducers of the frequency band equal (0–2) kHz and the accuracy
class: ±0.1% were used to measure the absolute pressure within the range of (0–4) MPa
abs. The transducers characteristics were checked before the tests and immediately after
their completion. It was estimated (according to [47]) that the uncertainty of the pressure
measurements was ca. 0.47 m wc (meters of water column).

A turbine flow meter (manufacturer: Turbines Inc. (Altus, OK, USA), type: HA) with
measurement inaccuracy (maximum measurement error) of 0.25% of the measured flow
rate in the range (0.5–10) m/s and 1% in the range (0.1–0.5) m/s was used to measure
the flow. The flowmeter indications were checked before and after the tests using the
volumetric method.

The degree of opening of the quick-closing ball valve was monitored with a single-
turn potentiometer. Before the tests, the potentiometer readings were calibrated with the
appropriate valve positions: potentiometer signal readings for a fully closed valve position
was defined as 0% of opening and respectively the signal for a fully opened valve was
defined as 100% of its opening. The valve closing time was determined based on the closing
course recorded in the data acquisition system. The uncertainty in determining this time is
negligibly small and depends on the resolution of the potentiometer and the resolution of
data recording.

A 16-bit measurement card and an application based on the DASYLab software (v.2016)
by DASYTEC System Daten Technik GmbH (Ludwigsburg, Germany) were used to record
the measurement data. Measurement signals were recorded with a frequency of 20 kHz.
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The choice of such a high recording frequency opens the possibility of conducting future
analyses of phenomena revealing themselves in the high frequency range (e.g., FSI). For
the analysis, these signals were processed and the frequency was reduced to 1 kHz. This
significantly facilitated the work related to data processing and therefore made it sufficient
to conduct a reliable analysis of the phenomenon in terms of the set goals of the work being
carried out.

Before the tests, the stand was carefully sluiced and filled with fresh tap water and left
idle for five days in order to minimize the influence of the air contained in the water on
the tested phenomenon. During the standstill, the system was kept open—valves in the
pipeline lines open, pressures between the upstream tank and downstream tank equalized.

The measurement results for four selected test runs of a water hammer are shown
in Figure 2. It presents pressure changes in the cross-section closest to the quick-closing
valve (Figure 1). These pressure changes were recorded at different water pressures in
the upstream tank (from 26.4 m wc to 119 m wc) and for different initial flows (from ca.
114 L/h to ca. 530 L/h). The compilation of these pressure waves allows the comparison
of the influence of the initial conditions on the scope and nature of the recorded pressure
changes during the water hammer.
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There is a phenomenon of interference of these waves, which can be observed in the
irregular wave shape, manifested by an asymmetric course with numerous refractions,
particularly at the beginning of the course, covering from a few to a dozen consecutive
amplitudes (ca. the first 7 s for each analyzed pressure course). The influence of the
particular geometry of the hydraulic pipeline system on the course of pressure changes
is clearly visible at about halfway through the first pressure peak where a decrease in the
mean pressure level is observed—Figure 3. This is mainly the result of the passage of the
pressure wave from the pipe with a smaller diameter (pipe #2 with the quick-closing valve
installed at its end) to the pipe with a larger diameter (pipe #1). In the cross-section of the
diameter change, the pressure wave is reflected propagating simultaneously in both pipes.
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Pressure fluctuations, both high-frequency, accompanying mainly the first pressure
increase, and low-frequency, observed e.g., between ∼0.6 s and ∼0.7 s, superimposed
on the main water hammer pressure changes, may be related to various factors. Among
the most important, apart from the geometric conditions of the pipeline (step change in
diameter between two pipes), phenomena related to the impact of waves propagating in
the liquid and in the material of the pipeline structure (FSI phenomenon [12]), as well as the
impact of pipeline fastenings or the presence of air in the liquid, should be mentioned. The
last two factors are manifested by relatively low frequency pressure changes (comparable
to the main pressure changes related to the water hammer). The high-frequency pressure
changes observed mainly at the beginning of the test runs are most likely related to the
movement of the shut-off valve, which stops by hitting the bumper at high speed. This
impact generates vibrations propagating in the structure of the valve and transferring to
the structure of the pipeline. As a result, FSI occurs and a pressure wave superimposed on
the main pressure changes is observed. However, the authors’ experience shows that the
applied impulse tubes and the mounting of the transducer, regardless of the construction of
the pipeline, significantly reduces the impact of this phenomenon on the measured pressure
signal in relation to the situation in which the transducers would be installed directly on
the pipe wall.

The experimental tests were carried out in conditions which, due to the initial assump-
tions, were considered to have no significant impact on the main goal of the work, i.e.,
the development of a method for reliable determination of the pressure wave propagation
speed in individual pipes and experimental verification of unsteady friction models used
to simulate the phenomenon of a water hammer in complex piping systems. The obtained
results presented in the later part of the paper confirmed the validity of these assumptions.
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3. Determining the Pressure Wave Speed in the Tested System

In order to perform calculations on the water hammer in the analyzed flow system, it
is necessary to know the pressure wave propagation speed in individual pipes of different
diameters. One of the possible ways of determining this speed in the tested cases is based
on the use of Joukowsky’s theory [48], which links the first pressure amplitude (maximum
increase) with the initial flow velocity and the pressure wave speed:

∆H1 =
a·V0

g
=

4a·Q0

g·πD2 (2)

where ∆H1 is the first pressure amplitude [m wc] (∆H1 = H1 − Hinit), H1 is the pressure
head of the first pressure rise caused by the water hammer [m wc], Hinit is the pressure
head in the initial steady-state condition before the water hammer [m wc], V0 is the initial
mean flow velocity [m/s], Q0 is the initial volumetric flow [m3/s] and a is the pressure
wave speed [m/s].

Formula (2) is correct for cases where the cut-off of the liquid flow in the pipeline takes
place during time Tc, which is not longer than the time of the pressure wave circulating
forth and back along the pipeline where the quick-closing valve is installed, i.e., in the time
equal to half of the period T of the pressure wave in this pipeline:

Tc ≤
T
2

→ Tc ≤
2L
a

(3)

where T is the pressure wave period [s] (T = 4L/a) and L is the length of pipeline [m].
For the analyzed laboratory system, condition Equation (3) is met: the valve closing

time Tc is about 50 times shorter than the ratio 2L/a for pipeline #2. Therefore, the analysis
of the uncertainty of determining the valve closing time, which is very small depending on
resolution of potentiometer and data acquisition, is insignificant in relation to the analysis
conducted in this paper.

The main problem with this method is that it requires knowing the exact values of
Q0 and ∆H1 to be able to accurately determine the wave speed a using Equation (2). As
shown in Figure 3, due to high frequency pressure oscillations, the most probable result
of the unfavorable effect of vibrations in the structure caused by the abrupt closing of the
shut-off valve, it is not possible to determine the value of ∆H1 with the required precision.
Additionally, the determination of the initial flow may be subject to a significant error
resulting from the accuracy class of the flow measurement transducer used. Therefore,
this paper proposes a method for determining the speed of pressure wave propagation
based on the measurement of the timing of the passage of the pressure wave between two
cross-sections in which pressure changes were measured during the tests.

In the later part of the paper, the second method is presented, which uses the frequency
of free pressure oscillations measured in the final phase of their damping in the tested
pipeline system to determine the speed of the pressure wave. This method was also applied
to the analyzed cases of water hammer.

3.1. Method #1

Equipping the laboratory stand with pressure measurements in several cross-sections
of the measuring pipeline opened the possibility of determining the speed of pressure
wave propagation in the system using the measurement of time of the pressure wave
passage between two sections in which the pressure measurements were carried out. After
detailed analyses of the measurement signals, it was decided to use for this purpose the
measurement signals from the transducer installed directly at the valve (transducer no. 1)
and the transducer installed in about half of the pipe #2 (transducer no. 2)—Figure 1. In
the case of the other signals, there was too high signal distortion manifested by pressure
fluctuations originating mainly from wave reflections from the cross-section of diameter
changes, but also from FSI effects, prevented their use in this method. Due to the fact that
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as the water hammer phenomenon continues, these distortions also become present in the
signals from transducers no. 1 and 2, the analysis could be carried out only for the first
pressure increase after closing the valve—Figure 4.
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The distance between Sections 1 and 2 of the pressure measurement was ∆l = 29.392 m.
Using the following basic relationship:

a =
∆l
∆t

(4)

the value of the pressure wave propagation speed in the pipe #2 a = a2_meas can be
determined on the basis of the value ∆t standing for the time of wave passage between the
measurement sections.

To estimate the pressure wave speed in pipe #1 (a1_est), which is connected to the
upstream tank, the value of the pressure wave speed in pipe #2 (a2_meas) can be used,
determined on the basis of the analysis shown in Figure 4. For this purpose, the following
formula can be used:

a1_est

a2_meas
=

√(
1 +

D2

e2
· K
E2

c1_2

)
/
(

1 +
D1

e1
· K
E1

c1_1

)
(5)

Formula (5) is based on Equation (1) and takes into account the fact that the pipelines
used during the tests are made of the same material (copper) and are supported in the same
way, and the underlying assumptions should be considered justified. For the considered
case the pipe #1 (D1 = 0.02 m, e1 = 0.001 m) and pipe #2 (D2 = 0.016 m, e2 = 0.001 m)
are made of the same material (E1 = E2 = E = 120·109 for copper) and are rigidly fixed to
the foundation in a similar way (c1_1 = c1_2 = c1 = 1 − ν2 is equal 0.8775 using Poisson’s
ratio for copper pipes ν = 0.35). The wave speed ratio defined by formula (5), calculated for
K = Kwater = 2.21·109 Pa (at water at 23 ◦C and under pressure approx. 100 m wc [49]), is
ca. 0.975.

In Table 1, the values of the pressure wave speed determined using Equations (4) and
(5) are shown for both pipes of the measuring system. These values apply to four test runs
differing in initial conditions (values of Q0 and H0). The uncertainty of these quantities
is mainly related to the time resolution of the recorded pressure oscillations. Therefore,
the relative uncertainty will depend on the time interval that is being measured. In the
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analyzed cases, the time of the pressure wave passage between two measurement sections
reaches values on the order of 10−2 s. Taking into account the recording frequency of
measurement signals (20 kHz), this means that estimated relative uncertainty of measuring
a1_est and a2_meas resulting from the procedure based on Equations (4) and (5) does not
exceed 0.2% (the uncertainty of measuring the distance ∆l between the transducers, which
is estimated at about 0.015%, was omitted).

Table 1. Parameters of selected test runs with pressure wave speed determined using method #1.

Test No

Pressure in the
Upstream

Tank
Initial Flow

Time of Wave Passage
between the Measurement
Sections of Pipe #2 Spaced

∆l = 29.392 m Apart

The Pressure Wave Speed
in the Pipe #2

Determined on the Basis
of Equation (4)

The Pressure
Wave Speed in the
Pipe #1 Calculated

on the Basis of
Equation (5)

H0 Q0 ∆t a2_meas a1_est

- m wc L/h ms m/s m/s

1 26.4 113.7 24.05 1222 1192

2 51.6 240.8 23.77 1236 1206

3 83.3 361.1 23.67 1242 1211

4 119.0 530.1 23.49 1251 1221

From all of the results presented in Table 1, attention is drawn to their quite clear
dependence on the pressure in the upstream tank, H0, which indicates that higher speed of
pressure wave propagation relates to the runs carried out at higher levels of this pressure.
The most likely cause of this effect is discussed later in the paper.

3.2. Method #2

The direct effect of the configuration of the hydraulic pipeline system is the resultant
frequency of pressure oscillations (free vibrations) observed at the end of the transient
phenomenon—Figure 5. Based on the analysis of the pressure wave period for this phase of
the phenomenon (averaged value from 20 selected final cycles of pressure oscillation in its
developed phase, for which the impact of the change in diameter is insignificant and their
shape is much more regular than for oscillations in the initial phase of the water hammer),
the resultant wave speed ar_meas was determined and its values are summarized in Table 2.

Table 2. Parameters of selected measurement runs tested on a laboratory stand together with data
for determining the resultant pressure wave speed of the pipeline composed of two pipes with
different diameters.

Test No

Pressure in the
Upstream Tank Initial Flow

Period of the Pressure Wave
(Calculated from 20 Final

Periods of Pressure
Oscillations)

The Resultant Pressure Wave
Speed in the Pipeline System

Composed of 2 Pipes with
Different Diameters

H0 Q0 T ar_meas

- m wc L/h s m/s

1 26.4 113.7 0.3120 1387

2 51.6 240.8 0.3090 1400

3 83.3 361.1 0.3065 1411

4 119.0 530.1 0.3043 1422
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Figure 5. The method #2 of determining the resultant speed of the pressure wave (ar_meas) in a system
composed of two pipes of different diameters.

The comparison of the results summarized in Tables 1 and 2 and presented in Figure 6
shows that the determined resultant wave speed ar_meas, similarly to the speed in individual
sections determined using method #1, also depends on the level of equilibrium pressure
(pressure in the upstream tank), H0. This effect is widely known and has been repeatedly
confirmed in scientific research (e.g., in [46]). It results from the fact that in the liquid (in
this case, water) there is a certain volume of air undissolved in it, mainly in the form of
microbubbles. This volume, although usually small, can be responsible for a significant
change in the bulk modulus as well as the density of the water–air fluid. Both of these
quantities affect the speed of pressure wave propagation, reducing it in relation to the
speed in the liquid without air. Moreover, due to the considerable compressibility of air, a
change in the pressure of the fluid causes a change in the proportion of the volume of air
to the volume of the liquid. This translates into changes in the bulk modulus and density
of the fluid, which in turn causes changes in the propagation speed of the pressure wave
under these conditions (i.e., greater pressure reduces the volume of air microbubbles in the
fluid, which increases the propagation speed of the pressure wave). It is roughly estimated
that in the analyzed cases the air content could be less than 10−3% of the total fluid volume
at standard pressure [46].

It is noteworthy that the resultant wave speed, ar_meas, is 7–10% higher than the speed
value a2_meas and by as much as 10–13% from a1_est determined using Equations (4) and (5),
respectively (method #1). Moreover, the value of ar_meas is only 4–7% less than the speed of
sound in water (1487.4 m/s under the test conditions).

The determination of the value of ar_meas is burdened with a comparable absolute
uncertainty as for the determination of a1_est and a2_meas using Equations (4) and (5). This
is because in the case of determining the wave speed ar_meas using method #2, the relative
uncertainty does not depend only on the number of free oscillations that will be taken into
account when determining the average period of the pressure wave. It must also take into
account the change in the wave frequency during the phenomenon.
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Figure 6. Pressure wave speed for pipe #1 and #2 (a1_est, a2_meas) determined using method #1
(based on the measurement of the time of pressure wave passage between two consecutive pipe
cross-sections) and the speed (ar_meas) of the resultant pressure wave (in the developed phase
of oscillations).

It is known that friction causes a decrease in the wave frequency as the transient
state phenomenon continues. Appendix A presents a rough analysis of the effect of
damping on the wave frequency change—the analysis was carried out assuming a linear
damping decrement and showed a negligible, approx. 0.05%, impact of such damping on
reducing the frequency of linearly damped vibrations relative to undamped vibrations.
In the case of a water hammer, friction is non-linear, which means that the frequency of
the pressure wave during this phenomenon, and thus also the speed of pressure wave
propagation, depends on its duration. In order to estimate this effect, method #2 was used
based on the measurement of the time for six subsequent five-wave period time intervals.
Additionally, the pressure wave speeds determined on this basis were compared with
the value determined for 30 wave periods. The results presented in Figure 7 confirm the
decrease in the speed of pressure wave propagation with the duration of the phenomenon.
However, one should be careful in interpreting these results due to the observed scattering
of the speed values around the trend line. This may be related to the fact that in the analyzed
phase of the pressure oscillations, the influence of changes in the diameter of pipes in the
flow system on the course of pressure changes can be still present. Nevertheless, it should
be emphasized that this scattering is small (reaching a maximum of 2.5 m/s, i.e., approx.
0.15% of the average value) and confirms that the use of method #2 based on the average
frequency value from several dozen periods of the pressure wave in its final phase does
not significantly affect the results of this method. This should be taken into account when
determining the uncertainty of the method, which should be about 0.2% for the analyzed
cases, i.e., as for method #1.

The appropriate uncertainty band of method #1 determined in accordance with [47],
together with the uncertainty band of method #2, were assessed based on the above
considerations and are shown in Figure 6.
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The quantity ar_meas can be used to determine the speed of pressure wave propaga-
tion in individual sections of the pipeline. This requires the assumption that this value
corresponds to the value of the propagation speed, ae, which would characterize a simple
hydraulic system, composed of a uniform pipeline with equivalent, constant geometric
(diameter, wall thickness) and material parameters (uniform along the entire length) equiv-
alent to the real system according to the water hammer analysis. The approach based on
replacing real systems built from a series of pipes with equivalent pipeline is very common
in practice, especially in issues related to extensive transmission networks, where it is desir-
able to quickly and reliably estimate the effects of a water hammer. In the literature such a
simplified analysis is recommended to be carried out, maintaining the similarity of inertia
and friction forces and the time period of the pressure wave transition [19,20,23]. According
to this principle, the pressure wave speed in the equivalent pipeline, ae, (resulting from
the assumption that the wave time period is preserved in each individual sections) is a
function dependent on the geometrical parameters (length, cross-sectional area) and on the
pressure wave speed in the individual i-th pipeline section. The assumption ae = ar_meas
and the knowledge of the full geometry of the real system, opens a chance to determine
the value of the pressure wave speed in individual pipes included in a complex pipeline
system. The validity of the results obtained with this procedure depends on the equivalent
pipeline model used, as is shown below. One of the proposals of such a model is based on
the following relationship [19,23]:

ae =
∑ Li

∑ Li/ai
(6)

In this model, the speed ae has an intermediate value between the values ai for
individual pipes of the pipeline system. However, such a result, assuming that the value of
ae should well approximate the value of the speed ar_meas of the resultant pressure wave, is
inconsistent with the results of the experiment presented in Tables 1 and 2 and in Figure 6.
Therefore, in further calculations, based on [33,34], an alternative method of determining
the equivalent speed in the pipeline system consisting of different pipes connected in series
was used.

In accordance with this method, the value of ae can be calculated using the Laplace
transform-based linear analysis of the system built with series-connected pipes. The
relationship that emerges from this analysis is as follows:

4Le

ae
=

2π

ωe
→ ae =

2
π

Leωe (7)
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where ωe is the circular frequency of pressure oscillation (index e stands for “equivalent
system”):

ωe =
2π

Te
, (8)

which in the case of two pipes connected in series fulfills the following equation [33,34]:

a1 A2

a2 A1
·tan

ωeL1

a1
·tan

ωeL2

a2
= 1 (9)

Other symbols in Equations (7)–(9) stand for: a1 or a2 is the actual pressure wave
speed characteristic for each individual pipe [m/s]; A1 or A2 is the area of cross-section of
each individual pipe [m2] (A = 0.25 π·D2); L1 or L2 is the length of the individual pipe [m];
Le is the equivalent length of a series connected pipe system, being the sum of the lengths
of the system components [m]; and Te is the wave period [s].

It should be emphasized that the above analysis does not take into account the full
impact of friction losses on the parameters of water hammer. Omitting the so-called
unit resistance of the pipe does not mean that the losses are completely excluded from
the analysis, but only their impact is reduced, which is manifested, inter alia, in a wave
frequency change. However, as it is shown in the further analysis, such an assumption has
a negligible effect on the wave speed in the tested system.

When the values of a1 and a2 are known, the Equation (9) enables the determination of
the value of ωe, and consequently, the value of the equivalent wave propagation speed, ae.

On the other hand, with the known geometric parameters of the pipes, i.e., A1, A2 and
L1 and L2, and the ratio a1/a2 given by Equation (5), the above procedure can be used to
determine numerically the value of the pressure propagation speed in individual sections
of the pipeline a1 and a2 in accordance with Equation (9) for a given value of ωe.

The values of the pressure wave speed in individual pipes in the pipeline system,
calculated in accordance with the described procedure for the analyzed test runs are
presented in Table 3. These values were compared with the values of the pressure wave
speed in individual pipes determined using method #1 based on Equations (4) and (5). The
differences between the compared values are on average approx. 0.08% and max. 0.1%
(this is within the uncertainty bands estimated for method #1 and #2). The comparison of
the results obtained with the two analyzed methods confirms the positive verification of
method #2.

Table 3. Values of pressure wave speed in the pipeline system—comparison of the values obtained
using method #1 and method #2.

Test No

The Velocity of Propagation of
the Resulting Pressure Wave in a

System of 2 Pipelines with
Variable Diameters, Calculated

on the Basis of 20 Final Periods of
Pressure Fluctuations

Pressure Wave Speed in Individual Pipes Differences between the Values of
Pressure Wave Propagation Velocity

in Sections of the Pipeline Calculated
on the Basis of Equation (9)

and Determined
on the Basis of Equation (4)

Determined Using
Method #1 (on the Basis
of Equations (4) and (5))

Calculated Using
Method #2 (for ar_meas

Basing on
Equations (9) and (5))

Pipe #1 Pipe #2 Pipe #1 Pipe #2

ar_meas a1_est a2_meas a1 a2
∆ai

ai_meas

- m/s m/s m/s m/s m/s %

1 1387 1192 1222 1192 1223 0.07%

2 1400 1206 1236 1204 1234 −0.15%

3 1411 1211 1242 1213 1244 0.18%

4 1422 1221 1251 1223 1254 0.19%

It should be noted that in this method, unlike method #1, it is sufficient to know the
pressure changes in one measurement cross-section only, which makes method #2 much
more attractive to use than method #1 in the context of analyzing and determining the
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speed of pressure wave propagation in systems composed of pipes connected in series, at
least when it comes to less complex flow systems consisting of a few pipelines connected
in series.

4. Verification of Water Hammer Simulation Method in Pipeline Systems Composed of
Pipes of Various Diameters Series-Connected

Numerical analysis of the water hammer phenomenon generated by a quick flow
cut-off in a system of two pipes with different diameters connected in series was carried
out with the use of our own computer program. The algorithm of this program is based
on the method of characteristics and takes into account the unsteadiness of friction losses
according to several available models. The program has been positively verified on the
basis of numerous comparisons of its results with the results of experiments, also those
conducted in the IMP laboratory [3,5,6,50]. The program uses a special solution domain
discretization procedure, which effectively eliminates the negative influence of numerical
damping on the calculation results by maintaining the CFL condition throughout the whole
grid of characteristics [51]. Details concerning this procedure and a general description of
the MOC are presented in the Appendix B. The consequence of using a special procedure
of discretization of the solution domain is, apart from the lack of numerical damping
(Figure A2), also the lack of sensitivity of the proposed numerical method to changes in the
grid density. It is important, however, that in order to use in calculations the parameters
of each of the series-connected pipes of the hydraulic system as close as possible to the
set/actual parameters, a sufficiently dense numerical grid is required (it is important to
obtain the required low difference between the actual/set value of a and agrid used in the
calculations—Appendix B).

The calculations of the pressure–time courses obtained using the developed numerical
method were compared with the runs recorded during tests on the laboratory stand in order
to check the convergence between them. This work focuses on the pressure changes in the
courses occurring in the cross-section directly at the quick-closing valve. The calculations
were made taking into account the quasi-steady (based on the Hagen–Poiseuille law and
Colebrook–White formula) and unsteady models (efficient version of the Vardy and Brown
model [52,53] and two versions of the Brunone et al. model [54,55]) of friction losses
described in detail in Appendix B.

4.1. Verification of the Numerical Method Using the Quasi-Steady Friction Loss Model

The calculations performed to carry out the comparative analysis were made for run
no. 4 (the initial conditions are presented in Table 1) and together with the measured
pressure heads are shown in Figure 8.

Since the analysis of the pressure wave propagation speed determined by the method
#1 and method #2 showed a high degree of their compatibility, the verification of cal-
culations made using friction loss models was carried out for the results obtained with
the method easier to use, i.e., the proposed method #2 (based on Equation (9)—Table 3):
a1 = 1223 m/s and a2 = 1254 m/s for a pipe with a larger and smaller diameter, respectively.

The numerical grid used in the calculations (a regular, rectangular grid) had 446 nodes
along the pipes x axis (206 for pipe No. 1 and 240 for pipe No. 2) and 76,642 nodes along the
time axis (simulation time tmax = 15 s). Details regarding the method of discretization of the
solution region are included in Appendix B. According to Figure A1, the grid within each
pipeline is identical, but differs in the dimensions of the grid cells. The dimensions of the
cells along the x-axis (pipelines axis), defined according to the relationship ∆xi = ∆ti·ai_grid,
where ai_grid is defined in Equation (A25), were as follows:

• For pipe #1: ∆x1 = 0.2393 m
• For pipe #2: ∆x2 = 0.2454 m
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calculated pressure wave obtained with the use of the quasi-steady model of friction losses for the
wave speed in pipes connected in series determined on the basis of Equation (9).

The grid dimensions along the t-axis for both pipelines ( ∆t1 = ∆t2 = ∆t) were equal
∆t = 1.957·10−4s. Thanks to such selection of grid size, the relative error of mapping the
wave speed in individual pipes was |εa1 | = 0.02%, |εa2 | = 0.01% for the respective pipes
(Equation (A26) in Appendix B). It should be emphasized here that the relative errors of
mapping the wave speed in individual pipes presented above do not generate numerical
damping, but only affect the discrepancies between the set (ai) and the calculated (ai_grid)
values of pressure wave propagation speed. The errors associated with this are not less
than ten times smaller than the uncertainty of methods #1 and #2 of determining the speed
a_i from the measurement data, so they do not have a significant impact on the calculation
results and conclusions formulated at a later stage of the analysis.

In order to check the calculation algorithm, calculations were made using a quasi-
steady model of friction losses (calculations carried out using the Hagen–Poiseuille law and
the Colebrook–White formula were performed with the value of density ρ = 998.97 kg/m3

and dynamic viscosity µ = 0.938·10−3 Pa·s for water at 23 ◦C and assuming the absolute
roughness of the inner surface of the copper pipe kr = 2·10−6 m—see Equations (A11)–(A13)
in Appendix B).

The comparison of the measurement and calculation results made with the use of the
quasi-steady model of friction losses, presented in Figure 8, showed a lack of agreement
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between them in terms of changes in pressure amplitudes over time and the shape of the
pressure wave. Numerous wave reflections persisting throughout the simulated time are
characteristic for the calculated pressure wave, while the measured wave shows a gentle,
sinusoidal-like course in the developed phase of the pressure oscillation.

These observations confirm the commonly known features of the quasi-steady model
of friction losses, which, apart from the first few pressure amplitudes, does not allow for an
accurate simulation of the water hammer phenomenon. However, it should be noted that
in the presented case the results of the calculations show a good agreement in regard to
the value of the first pressure amplitude (excluding high-frequency pressure peaks)—the
calculations show that the main pressure change from the water hammer (measured as
shown in Figure 8) is underestimated by only about 1%.

However, it is noteworthy that the calculation results obtained using the quasi-steady
friction model show a very good agreement with the frequencies of the measured pressure
wave—the wave period that is determined on the basis of the developed phase of pressure
oscillation is approx. 0.3043 s for both the measured and calculated pressure waves.

This confirms the correctness of the assumptions underlying the proposed method
#2 of determining the value of the pressure wave speed in individual pipes based on the
equivalent pipeline model described in [33].

4.2. Verification of the Numerical Method Using the Models of Unsteady Friction Losses

The main scope of this work was focused on the verification of unsteady friction
models used to simulate the water hammer in the analyzed system consisting of pipes of
different diameters connected in series. The expected better compliance of the pressure
amplitudes between measurements and calculations with unsteady friction models has
been validated for the efficient version of the Vardy and Brown model (Vardy and Brown
efficient) as well as the Brunone et al. model in version 1 (with the k3 coefficient calculated
from Equation (A18)—Brunone et al. ver.1) and version 2 (with a constant value of k3
coefficient adjusted to the reference run—in the case of the test run No. 4, the assumed
value of this coefficient was k3 = 0.045 –Brunone et al. ver. 2). These models were also
subjected to experimental verification in the authors’ previous studies for a homogeneous
pipeline with constant parameters [3].

The results of the calculations for the above-described Vardy and Brown efficient and
Brunone et al. ver. 1 models are shown in Figure 9. In terms of quality, the pressure wave
simulated using the Vardy and Brown efficient model represents much better agreement
with the measurements than the calculations carried out using the Brunone et al. ver.
1 model. The Vardy and Brown efficient model generates a wave that in the developed
phase of oscillations is regular, very similar to the measured wave. In the case of the
Brunone et al. ver. 1 model, the pressure wave is much more irregular, which indicates
that the combination of pipes with a stepwise change in diameter affects the calculated
pressure wave over the entire analyzed time of simulation. This means that the shape of
this wave is significantly different from the reference wave (measured), especially in the
developed phase of pressure oscillation. In addition, attention should be paid to a better
compliance of the pressure wave simulated using the Vardy and Brown efficient model
with the measurements mainly in terms of wave attenuation.

Comparison of the calculation results with the measurement results showed that the
period of computational pressure wave, T, depending on the model used, is as follows:

• approx. 0.309 s for the Vardy and Brown efficient model,
• approx. 0.310 s for the Brunone et al. ver. 1 model.
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This means that the frequency of the wave simulated with the use of these models of
friction losses is lower by almost 1.7% and 1.8%, respectively, than the frequency of the
wave measured during the tests. The resultant wave speed ar in the case of calculations
was 1398 m/s for the Vardy and Brown efficient model and 1397 m/s for the Brunone
et al. ver. 1 model. These values are less than the resultant speed value for the measured
wave (1422 m/s). This discrepancy cannot be the result of pressure wave damping and
its insignificant impact on the pressure wave frequency as was shown in the analysis
presented in Figure 7 and in Appendix A. Taking into account the results of these analyses,
it can be stated that the friction-induced damping effect of the pressure wave, because it
is vanishingly small, cannot be considered the cause of the observed disagreement and
it should be assumed that these differences most likely result from the properties of the
models of friction losses used. However, confirmation of this thesis requires additional
research and analyses. Nevertheless, it should be emphasized that there is a very high
agreement with the measurements considering the damping ratio achieved using the Vardy
and Brown efficient model and that the differences in the pressure wave propagation speed
are relatively small. This means that this model, apart from its theoretical quality, seems to
have great potential for application in engineering practice.

5. Discussion

The results of experimental tests presented in this paper, carried out on a stand
equipped with a copper pipeline consisting of two pipes of different diameters connected in
series, were subjected to detailed analyses. Thanks to two different methods of determining
the pressure wave speed in the system from the experimental data, it has been shown,
among others, that this quantity depends on the pressure level in the supply tank. The
presence of an amount of gas (air) microbubbles in the water, which could not be completely
eliminated before the tests, despite leaving the water at rest for several days, was considered
the most probable cause of this.

The presence of undissolved air may introduce additional uncertainty in the results
obtained using the proposed methods. This uncertainty can be minimized by conducting a
detailed analysis of the effect of air content on the pressure wave speed according to the
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methodology presented in [46] (chapter 8-2, pp. 139–142). It is based on the dependence of
pressure wave speed changes on the pressure level and gas fraction content in the air–water
mixture. This dependence results from taking into account the changes in the bulk modulus
and density caused by the presence of air in water. This is reflected in the formula for the
pressure wave speed, which, after some simplifying assumptions, shows its dependence
on the pipeline geometry (D, e) and the Young’s modulus of the pipeline material (E), as
well as on the liquid (water) bulk modulus K, absolute pressure pabs and the gas fraction
content determined from the ratio of the gas volume to the total volume of the gas–water
mixture Vg/V:

a =

√√√√√ K
ρ

1 + KD
Ee +

Vg
V

K
pabs

(10)

The analysis carried out for different values of the Vg/V ratios is presented in Figure 9
and concerns changes in the pressure wave speed in pipeline #2. The changes in the
pressure wave speed measured during the experiment using method #1 under the pres-
sure conditions pabs during the laboratory tests (from 36 m wc to 130 m wc) allowed for
determining the gas fraction in the gas–water mixture at approx. Vg/V = 0.005%.

As it results from the presented analysis, the air content in the laboratory conditions
causes a change in the propagation speed by ±1.3%. The range of these changes justifies
the statement that the content of undissolved air in the water present in the laboratory
conditions does not introduce significant uncertainty into the presented considerations.

The dependence of the pressure wave speed on the gas fraction in the fluid is shown
in Figure 10. It is worth emphasizing that for high gas contents the change in wave velocity
increases rapidly, but in the range up to Vg/V = 0.15%, this change is not greater than 10%.
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It should be emphasized that the change in pressure wave speed with the change
in gas volume, especially at low Vg/V, does not affect the uncertainty of the proposed
methods because they are based on precise time measurements (method #1 determines the
pressure wave speed based on the wave transit time between two pipeline cross-sections,
while method #2 is based on the wave period in the free oscillation phase).

The test results show the relatively high frequency of free pressure oscillations (for a
pipeline of full length L = L1 + L2) in the final (developed) phase of the water hammer. Its
value in the cases tested on the stand was higher than the results from the theory of pressure
wave propagation in individual pipes, without considering the process of their mutual
interaction. This effect is not compatible with some equivalent models assuming that for
systems composed of many pipes with different diameters and/or material characteristics,
the equivalent pressure wave speed (equal to the resultant wave speed) follows from the
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principle of maintaining the total wave transit time in individual pipes. This means that
according to such models, the equivalent pressure wave speed should have an intermediate
value between the speed values for individual serially-connected pipes. The conducted
research presented in this paper showed that for the developed phase of the water hammer,
these results were not confirmed—the measured resultant wave speed values for the final
stage of the pressure course in the tested cases were significantly higher than wave speed
values characteristics for each individual pipe.

The results of the calculations made using the method of characteristics with the special
discretization procedure of the solution domain that allows to eliminate the numerical
damping confirmed that for the laboratory test stand configuration the computational
resultant pressure wave is also characterized by a wave speed exceeding each of the wave
speeds calculated for the individual pipes.

This paper proposes a procedure for determining the pressure wave speed in individ-
ual pipes of a pipeline system on the basis of the resultant pressure wave speed read from
the measurements and with the use of appropriate theoretical considerations regarding the
equivalent model presented in [33,34]. The proposed method was verified on the basis of
the results obtained using the method of determining the pressure wave propagation speed
in individual pipes of the flow system, which uses the time of passage of the pressure wave
between adjacent measurement sections. It has been shown that the uncertainties of both
methods are comparable, while the proposed method requires only the knowledge of one
course of pressure changes, which makes it attractive especially in terms of its practical
use. Thanks to this procedure and the use of unsteady friction loss models, the numerical
simulation method obtains results that are highly compatible with the measurement results.

This paper proposes two methods, the results of which are very similar. Method #2,
which uses the measurement of the final phase of free pressure oscillations, is, however,
easier to use from a practical point of view. This is because it allows for determining the
pressure wave speed in individual pipelines of the flow system based on a single pressure
measurement in any chosen cross-section of the flow system (the closer to the shut-off
valve causing the water hammer the better, but this is not a necessary condition for this
method). Method #1 requires measuring the pressure in two cross-sections of one pipeline,
most preferably the pipeline in which the flow is cut off by a valve. While in practice flow
systems are usually not equipped with conveniently installed measurement equipment,
method #1 may be more problematic to use than method #2.

The increase in the complexity of the system construction increases the level of com-
plexity when using the proposed methods for determining the wave velocity in individual
pipeline elements. Method #2 can be used for systems consisting of a larger number of
pipelines connected in series using the more general version of Equation (9) in the following
form [33]:

n−1

∑
i=1

[
ai
Ai

·tan
ωLi
ai

n

∑
j=i+1

(
Aj

aj
·tan

ωLj

aj

)]
= 1 (11)

where n is the number of pipelines connected in series (n > 1) and i, j are the indices of the
individual pipelines.

In the case of very complex flow systems, solving Equation (11) and determining the
pressure wave speed for individual pipelines can be quite problematic. Therefore, in such a
situation, using method #1 can be an effective alternative. However, it should be remem-
bered that the condition for using this method is to perform two pressure measurements in
appropriately spaced cross-sections of one pipeline.

Based on the results of verification analysis of the numerical method, it was shown
that the calculation runs based on the unsteady models of friction losses show a high
degree of compliance in the prediction of the damping rate of pressure waves, while
discrepancies of several percent were found regarding the underestimation of the frequency
of the simulated pressure wave in comparison with the one recorded during the laboratory
tests. On the other hand, the use of the quasi-steady friction loss model showed a fairly
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well-known inconsistency between the calculated and measured waveforms in terms of
changes in pressure amplitudes over time and the shape of pressure waves, but almost
perfect agreement was found between the frequencies of the measured wave and the waves
calculated with the use of this model. Therefore, the thesis that the observed effect of a few
percent reduction in the frequency of pressure waves simulated using unsteady models of
friction losses results from the properties of these models is justified. This issue requires
further work in order to improve the accuracy of the calculations obtained using unsteady
models as regard to the frequency of the pressure waves.

6. Conclusions

The paper proposes methods for determining the pressure wave propagation speed
in pipelines connected in series. The analyses carried out confirmed the reliability of the
results obtained with their use. Due to the simplicity of the methods, they are convenient
tools that can be successfully used in engineering practice to reliably predict the course of
the water hammer phenomenon.

The additional aim of this work was to verify unsteady friction models based on
the results of experimental tests carried out for an elastic pipeline system consisting of
two series-connected pipes of different diameters. The experimentally verified numerical
method (which does not generate numerical damping) together with the method of de-
termining the pressure wave propagation speed (characterized by low uncertainty) from
measurement data, allow for achieving conditions for objective evaluation of the analyzed
friction models. The results of this work are a contribution to both the assessment of the
friction modeling methods, as one of the most difficult issues in this area of research, as
well as experimental studies of the phenomenon of a water hammer in complex hydraulic
systems and practical aspects related to this phenomenon.

Research areas requiring further work indicated in this paper are important in the
context of methods enabling the most accurate simulation of water hammers in real flow
systems. Positive verification of such numerical methods will allow, inter alia, (1) reducing
the uncertainty of estimating the immediate and fatigue strength of pressure systems,
(2) preparing an appropriate design of flow systems, (3) taking into account the selection of
appropriate fittings for regulating and cutting off the flow, and (4) actively controlling the
water hammer phenomenon and protecting against its dangerous effects.
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Appendix A. Analysis of the Impact of Pressure Wave Damping on the Wave Speed

In the above-mentioned two methods of determining the pressure wave speed in each
of the pipes connected in series, the impact of wave damping was neglected or significantly
reduced. Damping, according to the theory of vibrations, reduces their frequency. Treating
pressure waves as damped vibrations, it is possible to estimate the impact of the damping
ratio on the frequency reduction, i.e., reduction of wave velocity [56,57].
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The circular frequency of damped vibrations is determined from following formula:

ω =
2π

T
(A1)

Assuming that the pressure wave observed during the laboratory tests is an example
of linearly damped vibrations, it can be assumed that the circular frequency of these
vibrations is related to the circular frequency of undamped vibrations, ω0, according to the
following relation:

ω =
√

ω02 − h2 (A2)

where h is the damping coefficient constituting the exponent of the function describing the
change in time of the amplitude of linearly damped vibrations:

A(t) ∝ e−ht (A3)

It follows from (8) and (A2) that the circular frequency of undamped vibrations can be
determined as follows:

ω0 =
√

ω2 + h2 =

√(
2π

T

)2
+ h2 (A4)

The damping coefficient h in the exponent of the function (A3) can be defined
as follows:

h = δ
2
T

= δ
ω

π
(A5)

The constant logarithmic damping decrement, δ, characteristic for this type of vibra-
tion, is defined as follows:

δ = ln
|Ai|
|Ai+1|

(A6)

The presented definitions (A2)–(A6) show that the influence of damping on the circular
frequency can be calculated as follows:

ω0 − ω =
2
T

(√
π2 + ln2 |Ai|

|Ai+1|
− π

)
(A7)

An example analysis of the developed phase of the water hammer course presented in
Figure 5 (main text of the paper) showed that the ratio of successive oscillation amplitudes
is on average ∼1.1, which means that for the wave period T = 0.3043 s, the damping share
in the circular frequency is:

ω0 − ω

ω0
∼= 0.05% (A8)

Appendix B. Numerical Method

The equations describing the water hammer phenomenon, which are used in this
work, have the following form [19]:

• Continuity equation:

∂H
∂t

+
a2

g
∂V
∂x

= 0 (A9)

• Momentum equation:

∂V
∂t

+ g
∂H
∂x

+ g·J = 0 (A10)

where:

V—flow velocity in the pipe [m/s];
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H—pressure head [m wc];
J—unit pressure losses [-];
a—pressure wave speed [m/s];
x—coordinate along the axis of the pipe [m];
t—time coordinate [s];
g—acceleration of gravity [m/s2].

The component of unit pressure losses can be represented using the Darcy–Weisbach
formula:

J = f
1
D
·V|V|

2g
(A11)

where the friction coefficient, f , is defined depending on the friction loss model used in the
calculation. The following models were used in this work:

• Quasi-steady model, in which the value of the coefficient f is calculated using:

# Hagen–Poiseuille law for laminar flows Re ≤ 2320 [58]:

f =
64
Re

(A12)

# Colebrook–White formula (Colebrook 1939) for transient and turbulent flow
conditions Re > 2320:

1√
f
= −2log

(
2.51

Re
√

f
+

kr

3.71D

)
(A13)

where:

Re—Reynolds number: Re = VDρ/µ [-];
ρ—liquid density [kg·m−3];
µ—dynamic viscosity coefficient [Pa·s];
kr—absolute roughness of the inner surface of the pipe [m];

• Unsteady friction models:

# The Vardy and Brown model [52], in which the loss term is calculated based on
the history of flow changes. The range of applications for this model includes
smooth pipes and turbulent flows. The model has been positively verified by
the authors in [3]. The efficient version of this model, prepared by Vítkovský
et al. [53], which allows for a significant reduction in the requirements for
computing, was considered in the calculations. According to this model, the
unit friction loss term in equation (A11) has the following form:

J(t) = f
1
D
·V(t)|V(t)|

2g
+

16µ

ρgD2

∫ t

0

∂V
∂t∗

W(t − t∗)dt∗ (A14)

where:

W—weighting function defined in the domain of dimensionless time τ = 4µt/ρD2 in
the form:

W(τ) =
A∗e−B∗τ

√
τ

(A15)

for:

A* = 1
2

√
νw

πνlam
,

B* = Reκ
12.86 ,

κ = lg
(

15.29·Re−0.0567
)

,

νw—kinematic viscosity at the wall of the pipeline [m2/s],
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νlam—laminar kinematic viscosity [m2/s].

In the proposal of Vitkovský et al., the weighting function W is approximated using
the following expression:

W(τ) ≈ Wapp(τ) =
N

∑
k=1

A∗m∗
k e−(n∗

k+B∗)τ (A16)

where the coefficients m∗
k and n∗

k for k = (1, 2, . . . , 10) take the values from Table A1:

Table A1. Values of coefficients for calculating the weighting function according to (A16).

k 1 2 3 4 5 6 7 8 9 10

m∗
k 5.03362 6.4876 10.7735 19.904 37.4754 70.7117 133.46 251.933 476.597 932.86

n∗
k 4.78793 51.0897 210.868 765.03 2731.01 9731.44 34,668.5 123,511 440,374 1,590,300

# In the model of Brunone et al. [54,55], the loss term is calculated on the
basis of instantaneous flow velocity and flow acceleration values. According
to this model, the unit friction loss term in Equation (A11) has the follow-
ing form:

J(t) = f
1
D
·V(t)|V(t)|

2g
+

k3

g

(
∂V
∂t

− a
∂V
∂x

)
(A17)

Two versions of this model were considered in the calculations:

■ In the first (universal) version, the k3 coefficient, which is the basic
element of this model, is calculated from the formula proposed by
Vardy and Brown [52], which makes its value dependent on the flow
rate value:

k3 =
(

2
√

B∗
)−1

(A18)

■ In the second (the most popular) version, the value of the k3 coefficient
is selected in a way that guarantees the best possible adjustment of
the calculation course to the measured course.

In the applied method of characteristics, the Equations (A9) and (A10) are transformed
into a system of ordinary differential equations described on the lines of the characteristics
C+ and C−, along which the disturbance in the liquid spreads:

−For C+ : dV +
g
a

dH + gJ·dt = 0 (A19)

−For C− : dV − g
a

dH + gJ·dt = 0 (A20)

To integrate the system of Equations (A19) and (A20), the first-order finite difference
approximation scheme is used:

−For C+ : (VP − VA) +
g
a
(HP − HA) + (gJ)A·∆t = 0 (A21)

−For C− : (VP − VB)−
g
a
(HP − HB) + (gJ)B·∆t = 0 (A22)

The characteristic lines are described by the following equations:

C+ :
dx
dt

= a ; (A23)
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C− :
dx
dt

= −a (A24)

The applied method uses a rectangular grid—Figure A1. In order to ensure the
stability of calculations without generating numerical attenuation, it is necessary to apply
the solution domain discretization procedure, which ensures that the following condition
is met [51]:

∆x
∆t

= a (A25)

This condition must be met for each i-th pipe of the analyzed pipeline system.
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Discretization of the solution domain, which maintains the pipe geometry, requires
that the lengths of the individual pipes be an integer multiple of the numerical step length,
∆x, determined for these pipes in accordance with condition (A25). Moreover, in order to
eliminate errors in the interpolation of the function values between the grid nodes, it is
assumed that the simulation time step, ∆t, is the same for all pipes connected in series:

Li = mi·∆xi = mi·ai∆t (A26)

The conditions (A25) and (A26) show the need for an appropriate adjustment of the
numerical grid by correcting the value of the pressure wave speed in individual pipes, ai.
As a result of such a fit, new values of the pressure wave speed, ai_grid, are determined for
the grids belonging to each i-th analyzed pipes:

ai_grid = ai + ∆ai (A27)

The appropriate values of ∆xi and ∆t characterizing the grids are selected in such a
way as to minimize the error defined by the following formula:

ε =
n

∑
i=1

|∆ai|
ai

→ min (A28)

The quantity ε is a measure of the numerical grid mismatch to the given geometric
parameters and the pressure wave speed in individual pipes.

Confirmation that the applied method of discretization of the solution domain does not
generate artificial numerical damping is shown in Figure A2 (immediate valve closure, flow
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system configuration according to information contained in the table placed in Figure A2).
The results of the pressure wave calculations obtained for the frictionless case show a
constant amplitude of changes.

Calculations for different numerical grid densities for the configuration of the flow
system as in the frictionless case presented in Figure A2 also confirmed that this parameter
does not affect the obtained results. The following grid densities were used in the tests:

• grid size 72 × 12,000 (0.864·106 nodes: ∆t = 0.00125 s, ∆x1 = 1.25 m, ∆x2 = 1.5 m)
• grid size 180 × 30,000 (5.4·106 nodes: ∆t = 0.0005 s, ∆x1 = 0.5 m, ∆x2 = 0.6 m)
• grid size 450 × 75,000 (33.75·106 nodes: ∆t = 0.0002 s, ∆x1 = 0.2 m, ∆x2 = 0.24 m)

The obtained results did not show any visible differences in the generated numerical
waveforms of the water hammer.

Figure A2. Pressure changes at the valve during water hammer in two series-connected pipes of
different diameters. Calculations for frictionless case, using the own method of discretization of
the solution domain. Top graph—pressure changes over time; Bottom graph—changes in pressure
amplitudes over time and their linear approximation.
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33. Malesińska, A.; Rogulski, M.; Puntorieri, P.; Barbaro, G.; Kowalska, B.E. Use of Equivalent Speed to Estimate Maximum Pressure

Increase in Serial Pipes during Waterhammer—Numerical Simulations in Matlab. Int. J. Comp. Meth. Exp. Meas. 2019, 7, 22–32.
34. Chaudhry, M.H. Applied Hydraulic Transients, 3rd ed.; Springer: New York, NY, USA, 2014. [CrossRef]
35. Duan, H.F.; Lee, P.J.; Ghidaoui, M.S.; Tung, Y.K. Extended Blockage Detection in Pipelines by Using the System Frequency

Response Analysis. J. Water Resour. Plan. Manag. 2012, 138, 55–62. [CrossRef]
36. Duan, H.F.; Lee, P.J.; Kashima, A.; Lu, J.; Ghidaoui, M.S.; Tung, Y.K. Extended blockage detection in pipes using the system

frequency response: Analytical analysis and experimental verification. J. Hydraul. Eng. 2013, 139, 763–771. [CrossRef]
37. Duan, H.F.; Lee, P.J.; Ghidaoui, M.S.; Tuck, J. Transient wave-blockage interaction and extended blockage detection in elastic

water pipelines. J. Fluids Struct. 2014, 46, 2–16. [CrossRef]

https://doi.org/10.5545/sv-jme.2014.1882
https://doi.org/10.1115/1.4031001
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000891
https://doi.org/10.1016/j.jfluidstructs.2017.10.005
https://doi.org/10.1016/j.euromechflu.2016.09.010
https://doi.org/10.1016/j.jfluidstructs.2011.11.001
https://doi.org/10.1016/j.ijpvp.2018.07.009
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001251
https://doi.org/10.1115/1.1593703
https://doi.org/10.1007/BF01179205
https://doi.org/10.1016/j.jfluidstructs.2012.05.007
https://doi.org/10.1007/s00707-015-1493-1
https://doi.org/10.1080/00221686.2020.1844811
https://doi.org/10.3390/en14144071
https://doi.org/10.3390/w14193107
https://doi.org/10.1007/s00707-018-2179-2
https://doi.org/10.1115/1.4050728
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000411
https://doi.org/10.1007/978-1-4614-8538-4
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000145
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000736
https://doi.org/10.1016/j.jfluidstructs.2013.12.002


Appl. Sci. 2024, 14, 7173 28 of 28

38. Louati, M.; Meniconi, M.; Ghidaoui, M.S.; Brunone, B. Experimental study of the eigenfrequency shift mechanism in blocked pipe
system. J. Hydraul. Eng. 2017, 143, 04017044. [CrossRef]

39. Louati, M.; Meniconi, S.; Ghidaoui, M.S.; Brunone, B. Bragg-Type Resonance in Blocked Pipe System and Its Effect on the
Eigenfrequency Shift. J. Hydraul. Eng. 2018, 141, 04017056. [CrossRef]

40. Lee, P.J.; Duan, H.F.; Tuck, J.; Ghidaoui, M. Numerical and experimental study on the effect of signal bandwidth on pipe
assessment using fluid transients. J. Hydraul. Eng. 2015, 141, 04014074. [CrossRef]

41. Tuck, J.; Lee, P.J.; Davidson, M.; Ghidaoui, M.S. Analysis of transient signals in simple pipeline systems with an extended blockage.
J. Hydraul. Res. 2013, 51, 623–633. [CrossRef]

42. Brunone, B.; Ferrante, M.; Meniconi, S. Discussion of detection of partial blockage in single pipelines. J. Hydraul. Eng. 2008, 134,
872–874. [CrossRef]

43. Meniconi, S.; Brunone, B.; Ferrante, M.; Massari, C. Small amplitude sharp pressure waves to diagnose pipe systems. Water
Resour. Manag. 2011, 25, 79–96. [CrossRef]

44. Massari, C.; Yeh, T.C.; Ferrante, M.; Brunone, B.; Meniconi, S. A stochastic approach for extended partial blockage detection in
viscoelastic pipelines: Numerical and laboratory experiments. J. Water Supply Res. Technol. 2015, 64, 583–595. [CrossRef]

45. Meniconi, S.; Duan, H.F.; Lee, P.J.; Brunone, B.; Ghidaoui, M.S.; Ferrante, M. Experimental investigation of coupled frequency and
time-domain transient test–based techniques for partial blockage detection in pipelines. J. Hydraul. Eng. 2013, 139, 1033–1040.
[CrossRef]

46. Wylie, E.B.; Streeter, V.L. Fluids Transients; McGraw-Hill: New York, NY, USA, 1978.
47. ISO/IEC GUIDE 98-3:2008; Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement

(GUM:1995). ISO: Geneva, Switzerland, 2008.
48. Joukowsky, N. Über den hydraulischen Stoss in Wasserleitungsröhren [On hydraulic shock in water pipes]. In Mémoires de

l’Académie Impériale des Sciences de St.-Pétersbourg; 8th Series; Académie des sciences de Saint-Pétersbourg: St. Petersburg, Russia,
1900; Volume 9, pp. 1–71. (In German)

49. Bahadori, A.; Vuthaluru, H.B. Prediction of bulk modulus and volumetric expansion coefficient of water for leak tightness test of
pipelines. Int. J. Press. Vessel. Pip. 2009, 86, 550–554. [CrossRef]

50. Adamkowski, A.; Lewandowski, M. Cavitation Characteristics of Shutoff Valves in Numerical Modeling of Transients in Pipelines
with Column Separation. ASCE J. Hydraul. Eng. 2014, 141, 04014077. [CrossRef]

51. Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik (On the partial
difference equations of mathematical physics). Math. Ann. 1928, 100, 32–74. (In German) [CrossRef]

52. Vardy, A.E.; Brown, J.M.B. Transient turbulent friction in smooth pipe flows. J. Sound Vib. 2003, 259, 1011–1036. [CrossRef]
53. Vítkovský, J.; Stephens, M.; Bergant, A.; Lambert, M.; Simpson, A.R. Efficient and accurate calculation of Zielke and Vardy-Brown

unsteady friction in pipe transients. In Proceedings of the 9th International Conference on Pressure Surges, Chester, UK, 24–26
March 2004; Murray, S.J., Ed.; BHR Group: Shahapur, Indian, 2004; Volume II, pp. 405–419.

54. Brunone, B.; Golia, U.M.; Greco, M. Modelling of Fast Transients by Numerical Methods. In Proceedings of the International
Meeting on Hydraulic Transients with Water Column Separation, 9th Round Table, IAHR, Valencia, Spain, 4–6 September 1991;
pp. 273–280.

55. Brunone, B.; Golia, U.M.; Greco, M. Some remarks on the momentum equation for fast transients. In Proceedings of the
International Meeting on Hydraulic Transients with Column Separation, 9th Round Table, IAHR, Valencia, Spain, 4–6 September
1991; pp. 140–148.

56. Thomson, W.T. Theory of Vibration with Applications, 4th ed.; CRC Press: Boca Raton, FL, USA, 1993. [CrossRef]
57. Meirovitch, L. Fundamentals of Vibrations; McGraw-Hill: New York, NY, USA, 2001; p. 806.
58. Sutera, S.P.; Skalak, R. The History of Poiseuille’s Law. Annu. Rev. Fluid Mech. 1993, 25, 1–19. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1061/(ASCE)HY.1943-7900.0001347
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001383
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000961
https://doi.org/10.1080/00221686.2013.814599
https://doi.org/10.1061/(ASCE)0733-9429(2008)134:6(872)
https://doi.org/10.1007/s11269-010-9688-7
https://doi.org/10.2166/aqua.2015.034
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000768
https://doi.org/10.1016/j.ijpvp.2009.01.007
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000971
https://doi.org/10.1007/BF01448839
https://doi.org/10.1006/jsvi.2002.5160
https://doi.org/10.1201/9780203718841
https://doi.org/10.1146/annurev.fl.25.010193.000245

	Introduction 
	Laboratory Stand 
	Determining the Pressure Wave Speed in the Tested System 
	Method #1 
	Method #2 

	Verification of Water Hammer Simulation Method in Pipeline Systems Composed of Pipes of Various Diameters Series-Connected 
	Verification of the Numerical Method Using the Quasi-Steady Friction Loss Model 
	Verification of the Numerical Method Using the Models of Unsteady Friction Losses 

	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	References

